A murine model of Denys-Drash syndrome reveals novel transcriptional targets of WT1 in podocytes.

نویسندگان

  • Julien Ratelade
  • Christelle Arrondel
  • Ghislaine Hamard
  • Serge Garbay
  • Scott Harvey
  • Nathalie Biebuyck
  • Herbert Schulz
  • Nick Hastie
  • Marco Pontoglio
  • Marie-Claire Gubler
  • Corinne Antignac
  • Laurence Heidet
چکیده

The Wilms tumor-suppressor gene WT1, a key player in renal development, also has a crucial role in maintenance of the glomerulus in the mature kidney. However, molecular pathways orchestrated by WT1 in podocytes, where it is highly expressed, remain unknown. Their defects are thought to modify the cross-talk between podocytes and other glomerular cells and ultimately lead to glomerular sclerosis, as observed in diffuse mesangial sclerosis (DMS) a nephropathy associated with WT1 mutations. To identify podocyte WT1 targets, we generated a novel DMS mouse line, performed gene expression profiling in isolated glomeruli and identified excellent candidates that may modify podocyte differentiation and growth factor signaling in glomeruli. Scel, encoding sciellin, a protein of the cornified envelope in the skin, and Sulf1, encoding a 6-O endosulfatase, are shown to be expressed in wild-type podocytes and to be strongly down-regulated in mutants. Co-expression of Wt1, Scel and Sulf1 was also found in a mesonephric cell line, and siRNA-mediated knockdown of WT1 decreased Scel and Sulf1 mRNAs and proteins. By ChIP we show that Scel and Sulf1 are direct WT1 targets. Cyp26a1, encoding an enzyme involved in the degradation of retinoic acid, is shown to be up-regulated in mutant podocytes. Cyp26a1 may play a role in the development of glomerular lesions but does not seem to be regulated by WT1. These results provide novel clues in our understanding of normal glomerular function and early events involved in glomerulosclerosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration of Cistromic and Transcriptomic Analyses Identifies Nphs2, Mafb, and Magi2 as Wilms' Tumor 1 Target Genes in Podocyte Differentiation and Maintenance.

The Wilms' tumor suppressor gene 1 (WT1) encodes a zinc finger transcription factor. Mutation of WT1 in humans leads to Wilms' tumor, a pediatric kidney tumor, or other kidney diseases, such as Denys-Drash and Frasier syndromes. We showed previously that inactivation of WT1 in podocytes of adult mice results in proteinuria, foot process effacement, and glomerulosclerosis. However, the WT1-depen...

متن کامل

WT1 regulates the expression of the major glomerular podocyte membrane protein Podocalyxin

The WT1 tumor suppressor gene encodes a zinc finger transcription factor expressed in differentiating glomerular podocytes. Complete inactivation of WT1 in the mouse leads to failure of mesenchymal induction and renal agenesis, an early developmental phenotype that prevents analysis of subsequent stages in glomerular differentiation [1]. In humans with Denys-Drash Syndrome, a heterozygous germl...

متن کامل

Inherited WT1 mutation in Denys-Drash syndrome.

Patients with the Denys-Drash syndrome (Wilms' tumor, genital anomalies, and nephropathy) have been demonstrated to carry de novo constitutional mutations in WT1, the Wilms' tumor gene at chromosome 11p13. We report three new cases, two carrying a previously described WT1 exon 9 mutation and one with a novel WT1 exon 8 mutation. However, unlike patients in previous reports, one of our three pat...

متن کامل

A mutant form of the Wilms' tumor suppressor gene WT1 observed in Denys-Drash syndrome interferes with glomerular capillary development.

The Wilms' tumor suppressor gene WT1 encodes a zinc finger protein that is required for urogenital development. In the kidney, WT1 is most highly expressed in glomerular epithelial cells or podocytes, which are an essential component of the filtering system. Human subjects heterozygous for point mutations in the WT1 gene develop renal failure because of the formation of scar tissue within glome...

متن کامل

Functional characterization of WT1 binding sites within the human vitamin D receptor gene promoter.

The Wilms' tumor suppressor gene, wt1, encodes a zinc finger transcription factor that can regulate gene expression. It plays an essential role in tumorigenesis, kidney differentiation, and urogenital development. To identify WT1 downstream targets, gene expression profiling was conducted using a cDNA array hybridization approach. We confirm herein that the human vitamin D receptor (VDR), a lig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human molecular genetics

دوره 19 1  شماره 

صفحات  -

تاریخ انتشار 2010